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Fig. 2.1 Schematic representation of a solid body with
(a) an internal discrete discontinuity, and (b) a Phase-
Field approximation of the same discontinuity [1,2].
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Fig 3.1 Graphical representation of w, and ¢ parameters
in the PF formulation of Miehe et al. [4].
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Fig. 2.2 Stress-strain behaviour for AT1 and AT2

models in a single finite element under tension

[3], where ¢, is the strength and ¢, is the strain
when the stress reaches o, .
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Micro-model
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Fig 4.1: Modelling damage in composite materials at different scales [5]. Reprinted by per mission
from Springer Nature: Archives of Computational Methods in Engineering, Simulation of the
Mechanical Response of Thin-Ply Composites: From Computational Micro-Mechanics to Structural
Analysis, Albertino Arteiro et al, Copyright (2019).
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What are the main reasons for the large differences in the available values of
material properties and how can one sort realist values out of such disperse pool
of information?

Is the current experimental data reliable to perform calibration/validation of
material models used to approximate local micro-scale fields?

How accurate are the current PF formulations to predict micro-scale fracture
phenomena on UD FRPs, incl. thermoplastic-based composites, if realistic
geometric dimensions and material properties are taken into account?

What are the dimensions and boundary conditions in an RVE analysis necessary
to accurately capture micro-scale fracture phenomena using PF?
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Objectives

« Understand the current state-of-the-art, regarding numerical and
experimental techniques used to study micro-scale fracture in UD FRPs,
incl. FRTPs.

« Understand the capabilities and limitations of current Phase-Field
formulations for the micro-scale analysis of UD FRPs, incl. FRTPs, using
RVE analysis and embedded cell models.

Research
Executive
Agency




Phase Field Method
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Variational form of the Griffith
thermodynamic balance [1,2].

Fig. 2.1 Schematic representation of a solid body with
(a) an internal discrete discontinuity, and (b) a Phase-
Field approximation of the same discontinuity [1,2].
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Energy degradation function [1,2].
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Geometric crack function [1,2].
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Micromechanical analysis of composite materials
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Fiber-Matrix interface

Fiber Matrix

. Matrix-Matrix interface

Fig 4.5: Cohesive damage modelling for interface and
matrix cracking [7]. No permission is required for the
reprint of this figure.

Fig 4.6: Diffuse interface (n) and damage (¢) representation
[8]. Reprinted from Modelling progressive failure in multi-
phase materials using a phase field method, PengZhang,
Xiaofei Hu, Shangtong Yang, Weian Yao, Pages No. 107,

Fig 4.4: Failure sequence in a
single embedded fibre: a)
Debonding initiation, b)
interface fracture propagation
and kinking, and c) kinking
propagation and tunnelling
[6]. Reprinted from 3D in situ
observations of glass
fibre/matrix interfacial
debonding, Karolina
Martyniuka, Bent F.,
Sgrensena, Peter
Modreggerbc, Erik
M.Lauridsen, Pages No. 71,
Copyright (2013), with
permission from Elsevier.
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Fig 4.2: Single fibre
gﬁ:ﬁﬁfﬁé modelling approach.
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Representative Volume
Element (RVE) analysis

a)

Fig 4.8: a) RVE with a hexagonal fibre distribution [12], b) non-periodic RVE with a random fibre
distribution [13], and c¢) periodic RVE with a random fibre distribution.

In the work of Nguyen et al. [114] the term RVE is replaced by "statistical microstructural volume elements" (SMVE)
which is not restricted by the periodic arrangement (see Fig. 4.8 b)).

In the work of Wu et al. [44] the term RVE is replaced by the terminology "Stochastic Volume Elements" (SVESs).
The work of Bai et al. [116] mentions Statistical Volume Elements (SVEs) and RVEs. In [116], the definitions are linked

to the unit cell size.
Statistical definition

The work of Pulungan et al. [115] refers to RVEs of random, square and hexagonal fibre patterns (see Fig. 4.8 a)).

In the work of Arteiro et al. [83] the term RVE refers to sections of an embedded cell model for a cross-ply laminate
analysis, where periodicity is assumed in the longitudinal direction.

In the work of Naya et al. [82], one analysis is performed on a single-fibre model called “single-fibre RVE.”

Mechanical definition
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Research
Executive
Agency




!

Fig 4.3: Schematic of an embedded cell

simulation of fracture.
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Fig 4.10: Relation between laminate length L, 0-degree
ply thickness t,, and 90-degree ply thickness tq,.
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Fig 4.9: Comparison of micro-scale fibre
distributions: a) generated from micro-graphs [14]
(Reprinted from Micromechanical analysis of
damage mechanisms under tension of 0°-90° thin
ply composite laminates, M.Naderi, N.Iyyer, Pages
No. 2, Copyright (2020), with permission from
Elsevier), b) artificially generated [15] (Reprinted
from In-situ strength effects in long fibre reinforced
composites: A micro-mechanical analysis using the
phase field approach of fracture, T.Guillén-
Hernandez, A.Quintana-Corominas, 1.G.Garciac,
J.Reinosoc, M.Paggi, A.Turdn, Pages No. 10,
Copyright (2020), with permission from Elsevier).
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Fig 4.14: Different boundary conditions in embedded cell

models.
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Constitutive models, interactions

and material properties
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Constitutive models, interactions

and material properties
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Source/ Material Tensile Compressive Fracture
internal reference type strength [MPa] strength [MPa] toughness [N/mm]
Melro et al. [46] Hexcel 6376 (
)3
From Fiedler et al. [16] (epoxy) - 1 0.09
Vaughan and McCarthy [119] Hexcel 6376 103 264 _
From Fiedler et al. [16] (epoxy) ’
Naya et al. [126] Hexcel 8552 121 176 0.1
From Herraez et al. [158] (epoxy) B '
Pineda et ?11. [1.38] MY750/HY917/DY063 66.5 B 0.000563
From calibration (epoxy)

Chevalier et al. [106] RTM6 B B 0.001
Morelle [165] (epoxy) '
Song et al. [132] Solvalite 710-1 B 550 B

From calibration (epoxy) L
Labanda_ et al. [7] Epoxy 50 . 0.5
Kohler et al. [151] Toray TP80ep B B 0.064
B (epoxy)
Tan and Martlrf:z-Paneda [28] Epoxy 20 - 0.01
Arteiro et al. [83] Toho #113
From Fiedler et al. [16] (epoxy) 93 330 0277

Table 4.3: Matrix mechanical properties based on different publications. 17
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Constitutive models, interactions
and material properties

Source Materials Normal Shear Gic Gric
type strength [MPa] strength [MPa] [N/mm] [N/mm]

[46] Glass/Epoxy 70 0.002 0.006
[28] Glass/Epoxy 40 60 0.125 0.15
[122]  Glass/Epoxy 40 0.025 0.1
[121]  Carbon/Epoxy 100 — 0.1 —
[126] Carbon/Epoxy 42 64 0.002
[106] Carbon/Epoxy 50 75 0.002
[158] Carbon/Epoxy 100 75 0.01

Table 4.4: Interface mechanical properties based on
different publications.
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Phase-Field implementation
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Matrix

E [MPa] v I[-] lo [um] G, [N/mm]
3760 0.39 1.0 0.02
. Fibre
Matrix E [MPa] VI o lum] G, [N/mm]
1500 0.2 (-] [-]
Interface
Void K; [N/'mm’] Kj [N/mm’] oy [MPa] o750 [MPa]
108 108 50.0 75.0
G IN/mm] Gy [N/'mm] BK law [-]
0.002 0.006 1.45
Fig 5.1: Mesh and BC for the open-hole Taglng'l: Mat_eri.al prfopertiesdfqr fli_bre, mlatri?<
specimen under tensile loading. and fibre-matrix interface used in linear elastic
AT1 and AT2 formulations for micro-mechanical
numerical tests [18].
Implementation Total number of iterations Running time
UEL Newton-Raphson 515 00:18:00
UEL Quasi-Newton 557 00:15:00
UMAT-Thermal 593 01:06:00

Table 5.2: Comparison of total number of iterations and running time for the model in Fig. 5.1 using a UEL with a
standard Newton-Raphson scheme, a UEL with a Quasi-Newton scheme and a UMAT-Thermal implementation.
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Fig 5.8: Crack patterns for AT1 and AT2 formulations under tensile loading and different values
of the length scale parameter. 21
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Single fibre analysis
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Single fibre
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Single fibre

(PF + Cohesive damage)
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of the length scale parameter.
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Single fibre

(PF + Cohesive damage)
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RVE analysis
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RVE

Strain at max. stress vs RVE size
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Fig 7.8: Failure envelopes of: (i) Camanho et
al. [18] and (ii) linear-elastic matrix and
cohesive interface damage (Cohesive Only).
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RVE

(PF + Cohesive damage)

Tension

Fig 7.15: Maximum, minimum, average and standard deviation of
(a) the peak stress values and (b) the strains at peak stress for
different RVE sizes under tensile loading, Phase-Field AT1
formulation and Miehe’s energy split.
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Fig 7.18: Stress-strain curves for
a perfect interface connection
(No Cohesive, No PF) compared
to a model considering a
damageable cohesive interface
only (Cohesive Only) and models
considering cohesive and PF
damage using the AT1
formulation and Miehe’s energy
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used for tensile loading.
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Fig 7.23: Failure envelopes of: (i) Camanho et al. [18] and (ii) linear-elastic matrix and co hesive
interface damage (Cohesive Only), (iii) AT1 No Split, (iv) AT2 No Split, (v) AT1 Miehe’s split, (vi) AT2
Miehe’s split, (vii) AT1 Amor’s split and (viii) AT2 Amor's split.
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Fig 7.27: Failure envelopes computed using: (i) Camanho et al. [18], (ii) linear-elastic matrix
and cohesive interface damage (Cohesive Only). AT1 and Miehe’s split formulation with
length scale (10) equal to (iii) 5 um, (iv) 3 um and (v) 1 um. AT2 and Miehe’s split
formulation with length scale equal to (vi) 5 uym, (vii) 3 pm and (viii) 1 pm.
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Fig 7.29: Crack patterns for tensile 0.25
loading using AT1 and AT2 formulations 0.17
with length scale equal to: (i) 1 pm, (ii) 88%

3 um and (iii) 3 pm.
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Embedded cell models
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Fracture in cross-ply

laminates
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a) Straight crack / delamination c) Oblique cracks / delamination
0-deg plies 0-deg plies
Load - - »
0-deg plies 0-deg plies
b) Curved cracks / delamination d) Diagonal cracks / delamination
0-deg plies Non-90-deg plies
. - - »

0-deg plies Non-90-deg plies

Fig 8.1: Types of transverse fracture in [(S)/90n]s laminates: a) Straight transverse crack with /without partlal

delamination, b) Curved cracks around a straight transverse crack with/without partial delamination, c) Oblique

cracks around a straight transverse crack with/without partial delamination, and d) diagonal crack with/without
partial delamination [19]. 36
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Fig 8.3: The first principal stress along the 0/90 interface in a Fig 8.4: Maximum principal stress (S1) at the 0/90 interface
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Fig 8.2: Traditional modelling approach to study e

transverse fracture [20, 21]. Agency
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Fig 8.9: Micro-scale embedded section
in a cross-ply laminate. Boundary
conditions and model explanation.

Fig 8.10: Micro-scale embedded sections in cross-ply laminates. Fibre
distributions for different ply thicknesses.
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Fig 8.11: PF damage and cohesive interface separation in the micro-scale embedded sections in cross-ply
laminates of different normalised lengths and thicknesses. The results in the left-hand side show the 39
formation of curved or oblique cracks, while the results on the right-hand side show the formation of a
straight transverse crack.
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Figure 8.12: Maximum strain to create and
oblique or transverse straight crack in layups of Fig 8.13: Minimum absolute distance between
different thickness. transverse cracks necessary to observe an
oblique crack as a function of different inner
layer thicknesses.
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t3 = 0.04 X3 mm

Strain = 2.1 % Strain =3 % g1
Fig 8.14: Evolution of the upper left oblique crack in the representative section of the layup
t; =0.04x3 mm, L =t3 X 2.
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Key Challenges & Knowledge Gaps

Experimental Limitations: Micro-scale strain measurement techniques are unreliable.
*Material Variability: Inconsistent material property values create challenges.
*Fibre-Matrix Interactions: Fracture behaviour depends on fibre-matrix strength, but
interface properties are very difficult to measure.

‘Validation Issues: Lack of reliable experimental benchmarks limits numerical model
validation.

Implementation in Abaqus: UEL vs. UMAT

‘UEL (User Element): Better numerical performance, but difficult post-processing.
‘UMAT (User Material): Easier visualization but less computational flexibility.

*Key Insight: The choice depends on balancing computational efficiency with analysis
depth.

Role of Boundary Conditions & RVE Size

*Boundary conditions significantly impact fracture predictions, especially in localized failure.
*Fibre distribution & RVE loading introduce variability.

*Need for systematic guidelines to select appropriate conditions.
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RVE & Embedded Cell Model Insights

Fibre distribution, resin thickness, and RVE/cell size significantly affect fracture predictions.
*Traditional PF models play a minor role under tensile-dominated loading. The influence of PF
parameters becomes more relevant for compressive and shear loading.

*The large amount of material, interface and model parameters can be adapted to fit the
target/validation data. However, this does not warrant an accurate approach.

Recommendations & Future Research
-Improve Experimental Techniques: Reduce artefacts & enhance strain measurement accuracy.
‘Enhance Numerical Approaches: Systematic parameter selection & transparent methodologies.
*Develop Advanced Models:
« Integrate elasto-plastic & hyper-elasto-plastic formulations with PF.
« Explore alternative PF models with micro-scale length scale can be defined independent of
mechanical properties.

Conclusion

The Phase-Field method has strong potential for fracture modeling but requires further
development.

*Bridging experimental & numerical research is critical for improving composite material design &
reliability.

44

Research
Executive
Agency




45

SNOILOWVU

Thank you!
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